Transient In Vivo Resistance Mechanisms of Burkholderia pseudomallei to Ceftazidime and Molecular Markers for Monitoring Treatment Response

نویسندگان

  • Jason E. Cummings
  • Richard A. Slayden
چکیده

Much is known about the mode of action of drugs and resistance mechanisms under laboratory growth conditions, but research on the bacterial transcriptional response to drug pressure in vivo or efficacious mode of action and transient resistance mechanisms of clinically employed drugs is limited. Accordingly, to assess active alternative metabolism and transient resistance mechanisms, and identify molecular markers of treatment response, the in vivo transcriptional response of Burkholderia pseudomallei 1026b to treatment with ceftazidime in infected lungs was compared to the in vitro bacterial response in the presence of drug. There were 1,688 transcriptionally active bacterial genes identified that were unique to in vivo treated conditions. Of the in vivo transcriptionally active bacterial genes, 591 (9.4% coding capacity) genes were differentially expressed by ceftazidime treatment. In contrast, only 186 genes (2.7% coding capacity) were differentially responsive to ceftazidime treatment under in vitro culturing conditions. Within the genes identified were alternative PBP proteins that may compensate for target inactivation and transient resistance mechanisms, such as β-lactamses that may influence the potency of ceftazidime. This disparate observation is consistent with the thought that the host environment significantly alters the bacterial metabolic response to drug exposure compared to the response observed under in vitro growth. Notably, this study revealed 184 bacterial genes and ORFs that were unique to in vivo ceftazidime treatment and thus provide candidate molecular markers for treatment response. This is the first report of the unique transcriptional response of B. pseudomallei from host tissues in an animal model of infection and elucidates the in vivo metabolic vulnerabilities, which is important in terms of defining the efficacious mode of action and transient resistance mechanisms of a frontline meliodosis chemotherapeutic, and biomarkers for monitoring treatment outcome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antimicrobial resistance to ceftazidime involving loss of penicillin-binding protein 3 in Burkholderia pseudomallei.

Known mechanisms of resistance to β-lactam antibiotics include β-lactamase expression, altered drug target, decreased bacterial permeability, and increased drug efflux. Here, we describe a unique mechanism of β-lactam resistance in the biothreat organism Burkholderia pseudomallei (the cause of melioidosis), associated with treatment failure during prolonged ceftazidime therapy of natural infect...

متن کامل

Antimicrobial Susceptibility and Genetic Characterisation of Burkholderia pseudomallei Isolated from Malaysian Patients

Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ), the synthetic β-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s) in...

متن کامل

Development of ceftazidime resistance in an acute Burkholderia pseudomallei infection

Burkholderia pseudomallei, a bacterium that causes the disease melioidosis, is intrinsically resistant to many antibiotics. First-line antibiotic therapy for treating melioidosis is usually the synthetic β-lactam, ceftazidime (CAZ), as almost all B. pseudomallei strains are susceptible to this drug. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, which can lead t...

متن کامل

Loss of Methyltransferase Function and Increased Efflux Activity Leads to Doxycycline Resistance in Burkholderia pseudomallei.

The soil-dwelling bacterium Burkholderia pseudomallei is the causative agent of the potentially fatal disease melioidosis. The lack of a vaccine toward B. pseudomallei means that melioidosis treatment relies on prolonged antibiotic therapy, which can last up to 6 months in duration or longer. Due to intrinsic resistance, few antibiotics are effective against B. pseudomallei The lengthy treatmen...

متن کامل

Rapid Burkholderia pseudomallei identification and antibiotic resistance determination by bacteriophage amplification and MALDI-TOF MS

Phage amplification detected by MALDI-TOF MS was investigated for rapid and simultaneous Burkholderia pseudomallei identification and ceftazidime resistance determination. B. pseudomallei ceftazidime susceptible and resistant ΔpurM mutant strains Bp82 and Bp82.3 were infected with broadly targeting B. pseudomallei phage ϕX216 and production of the m/z 37.6 kDa phage capsid protein observed by M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017